Summary method for cv.ncvreg
objects
An object with S3 class summary.cv.ncvreg
. The class has its own
print method and contains the following list elements:
The penalty used by ncvreg
.
Either "linear"
or "logistic"
, depending on the family
option in ncvreg
.
Number of instances
Number of regression coefficients (not including the intercept).
The index of lambda
with the smallest cross-validation error.
The sequence of lambda
values used by cv.ncvreg
.
Cross-validation error (deviance).
Proportion of variance explained by the model, as estimated by cross-validation. For models outside of linear regression, the Cox-Snell approach to defining R-squared is used.
Signal to noise ratio, as estimated by cross-validation.
For linear regression models, the scale parameter estimate.
For logistic regression models, the prediction error (misclassification error).
Breheny P and Huang J. (2011) Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection. Annals of Applied Statistics, 5: 232-253. doi:10.1214/10-AOAS388
# Linear regression --------------------------------------------------
data(Prostate)
cvfit <- cv.ncvreg(Prostate$X, Prostate$y)
summary(cvfit)
#> MCP-penalized linear regression with n=97, p=8
#> At minimum cross-validation error (lambda=0.0638):
#> -------------------------------------------------
#> Nonzero coefficients: 5
#> Cross-validation error (deviance): 0.53
#> R-squared: 0.60
#> Signal-to-noise ratio: 1.51
#> Scale estimate (sigma): 0.725
#> MCP-penalized linear regression with n=97, p=8
#> At lambda=0.0638:
#> -------------------------------------------------
#> Nonzero coefficients : 5
#> Expected nonzero coefficients: 1.87
#> Average mfdr (5 features) : 0.374
#>
#> Estimate z mfdr Selected
#> lcavol 0.533903 8.500 < 1e-04 *
#> svi 0.692676 3.873 0.015225 *
#> lweight 0.611121 3.537 0.050561 *
#> lbph 0.054944 1.584 0.885443 *
#> age -0.006941 -1.331 0.917808 *
# Logistic regression ------------------------------------------------
data(Heart)
cvfit <- cv.ncvreg(Heart$X, Heart$y, family="binomial")
summary(cvfit)
#> MCP-penalized logistic regression with n=462, p=9
#> At minimum cross-validation error (lambda=0.0177):
#> -------------------------------------------------
#> Nonzero coefficients: 7
#> Cross-validation error (deviance): 1.07
#> R-squared: 0.20
#> Signal-to-noise ratio: 0.25
#> Prediction error: 0.262
#> MCP-penalized logistic regression with n=462, p=9
#> At lambda=0.0177:
#> -------------------------------------------------
#> Nonzero coefficients : 7
#> Expected nonzero coefficients: 1.86
#> Average mfdr (7 features) : 0.266
#>
#> Estimate z mfdr Selected
#> age 0.050443 5.812 < 1e-04 *
#> famhist 0.911639 4.124 0.0023397 *
#> tobacco 0.080099 3.301 0.0451490 *
#> typea 0.037675 3.208 0.0601656 *
#> ldl 0.170154 3.160 0.0693819 *
#> obesity -0.015959 -1.322 0.8199744 *
#> sbp 0.001333 1.054 0.8623941 *
# Cox regression -----------------------------------------------------
data(Lung)
cvfit <- cv.ncvsurv(Lung$X, Lung$y)
summary(cvfit)
#> MCP-penalized Cox regression with n=137, p=8
#> At minimum cross-validation error (lambda=0.1276):
#> -------------------------------------------------
#> Nonzero coefficients: 3
#> Cross-validation error (deviance): 7.50
#> R-squared: 0.31
#> Signal-to-noise ratio: 0.46
#> MCP-penalized Cox regression with n=137, p=8
#> At lambda=0.1276:
#> -------------------------------------------------
#> Nonzero coefficients : 3
#> Expected nonzero coefficients: 1.28
#> Average mfdr (3 features) : 0.426
#>
#> Estimate z mfdr Selected
#> karno -0.03318 -6.589 < 1e-04 *
#> squamous -0.38295 -2.732 0.59462 *
#> adeno 0.33542 2.585 0.68452 *