Power for t tests, including arbitrary linear hypotheses
tpower.Rd
Power for t tests, including arbitrary linear hypotheses
Arguments
- n
Sample size (total).
- delta
Effect size; if specified, a two-group design is assumed. If more than two groups, use
b
instead.- lam
Contrast.
- b
If a vector, the coefficient for each group. If a matrix, must have
length(n)
rows.- sd
Standard deviation of outcome.
- alpha
Type I error rate.
- w
Weights for unequal allocation (normalized to 1).
- n1, n2
Sample size for group 1, 2.
- verbose
Print details for power calculations. Default: TRUE unless vectorized.
- power
Desired power.
- upper
Upper bound for
tsamsize()
; increase if tsamsize hits this bound. Default: 5000.- ...
For
tsamsize()
, additional arguments to be passed totpower()
.
Examples
tpower(100, 0.5)
#> Group 1: 50
#> Group 2: 50
#> Power: 0.697
tpower(10*(6:9), 0.5) # Vectorize sample size
#> [1] 0.4778410 0.5406591 0.5981316 0.6501772
tpower(100, seq(0.25, 1, by=0.25)) # Vectorize effect size
#> [1] 0.2350874 0.6968888 0.9602024 0.9986074
tpower(100, 0.5, alpha=seq(0.01, 0.05, 0.01)) # Vectorize alpha
#> [1] 0.4529913 0.5553191 0.6178457 0.6624989 0.6968888
tpower(99, b=c(0.5, 0.5, 0), lam=c(1,1,-1)) # A multi-group example
#> Group 1: 33
#> Group 2: 33
#> Group 3: 33
#> Power: 0.907
tsamsize(0.5)
#> n1 n2
#> 64 64
tsamsize(lam=c(-1,1,0,0), b=c(0,1,1,1))
#> n1 n2 n3 n4
#> 17 17 17 17