R/predict-cv.R
, R/predict.R
predict.ncvreg.Rd
Similar to other predict methods, this function returns predictions from a
fitted ncvreg
object.
# S3 method for class 'cv.ncvreg'
predict(
object,
X,
type = c("link", "response", "class", "coefficients", "vars", "nvars"),
which = object$min,
...
)
# S3 method for class 'cv.ncvreg'
coef(object, which = object$min, ...)
# S3 method for class 'cv.ncvsurv'
predict(
object,
X,
type = c("link", "response", "survival", "median", "coefficients", "vars", "nvars"),
which = object$min,
...
)
# S3 method for class 'ncvreg'
predict(
object,
X,
type = c("link", "response", "class", "coefficients", "vars", "nvars"),
lambda,
which = 1:length(object$lambda),
...
)
# S3 method for class 'ncvreg'
coef(object, lambda, which = 1:length(object$lambda), drop = TRUE, ...)
Fitted ncvreg
model object.
Matrix of values at which predictions are to be made. Not used for
type="coefficients"
or for some of the type
settings in predict
.
Type of prediction:
link
returns the linear predictors
response
gives the fitted values
class
returns the binomial outcome with the highest probability
coefficients
returns the coefficients
vars
returns a list containing the indices and names of the nonzero variables at each value of lambda
nvars
returns the number of nonzero coefficients at each value of lambda
.
Indices of the penalty parameter lambda
at which predictions
are required. By default, all indices are returned. If lambda
is
specified, this will override which
.
Not used.
Values of the regularization parameter lambda
at which
predictions are requested. For values of lambda
not in the sequence
of fitted models, linear interpolation is used.
If coefficients for a single value of lambda
are to be
returned, reduce dimensions to a vector? Setting drop=FALSE
returns
a 1-column matrix.
The object returned depends on type.
Breheny P and Huang J. (2011) Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection. Annals of Applied Statistics, 5: 232-253. doi:10.1214/10-AOAS388
data(Heart)
fit <- ncvreg(Heart$X, Heart$y, family="binomial")
coef(fit, lambda=0.05)
#> (Intercept) sbp tobacco ldl adiposity famhist
#> -4.079298688 0.000000000 0.037271649 0.075045442 0.000000000 0.611522063
#> typea obesity alcohol age
#> 0.009798506 0.000000000 0.000000000 0.047479496
head(predict(fit, Heart$X, type="link", lambda=0.05))
#> [1] 0.358554123 -0.217849509 -0.510057641 0.546336589 0.216182502
#> [6] -0.007063715
head(predict(fit, Heart$X, type="response", lambda=0.05))
#> [1] 0.5886904 0.4457520 0.3751800 0.6332852 0.5538361 0.4982341
head(predict(fit, Heart$X, type="class", lambda=0.05))
#> [1] 1 0 0 1 1 0
predict(fit, type="vars", lambda=c(0.05, 0.01))
#> $`0.0500`
#> tobacco ldl famhist typea age
#> 2 3 5 6 9
#>
#> $`0.0100`
#> sbp tobacco ldl famhist typea obesity age
#> 1 2 3 5 6 7 9
#>
predict(fit, type="nvars", lambda=c(0.05, 0.01))
#> 0.0500 0.0100
#> 5 7