Package index
-
ncvfit()
- Direct interface for nonconvex penalized regression (non-pathwise)
-
ncvreg()
- Fit an MCP- or SCAD-penalized regression path
-
ncvsurv()
- Fit an MCP- or SCAD-penalized survival model
-
std()
- Standardizes a design matrix
-
assign_fold()
- Assign folds for cross-validation
-
cv.ncvreg()
cv.ncvsurv()
- Cross-validation for ncvreg/ncvsurv
-
plot(<cv.ncvreg>)
- Plots the cross-validation curve from a cv.ncvreg object
-
summary(<cv.ncvreg>)
print(<summary.cv.ncvreg>)
- Summarizing cross-validation-based inference
-
AUC(<cv.ncvsurv>)
- AUC for cv.ncvsurv objects
-
logLik(<ncvreg>)
logLik(<ncvsurv>)
- Extract Log-Likelihood
-
predict(<cv.ncvreg>)
coef(<cv.ncvreg>)
predict(<cv.ncvsurv>)
predict(<ncvreg>)
coef(<ncvreg>)
- Model predictions based on a fitted ncvreg object.
-
predict(<ncvsurv>)
- Model predictions based on a fitted
ncvsurv
object.
-
plot(<ncvreg>)
- Plot coefficients from a ncvreg object
-
plot(<ncvsurv.func>)
- Plot survival curve for ncvsurv model
-
residuals(<ncvreg>)
- Extract residuals from a ncvreg or ncvsurv fit
-
local_mfdr()
- Estimate local mFDR for all features
-
mfdr()
- Marginal false discovery rates
-
plot(<mfdr>)
- Plot marginal false discovery rate curves
-
perm.ncvreg()
- Permutation fitting for ncvreg
-
permres()
- Permute residuals for a fitted ncvreg model
-
summary(<ncvreg>)
print(<summary.ncvreg>)
- Summary method for ncvreg objects
-
boot_ncvreg()
- Hybrid Bootstrap Confidence Intervals