Package index
-
ncvfit() - Direct interface for nonconvex penalized regression (non-pathwise)
-
ncvreg() - Fit an MCP- or SCAD-penalized regression path
-
ncvsurv() - Fit an MCP- or SCAD-penalized survival model
-
std() - Standardizes a design matrix
-
assign_fold() - Assign folds for cross-validation
-
cv.ncvreg()cv.ncvsurv() - Cross-validation for ncvreg/ncvsurv
-
plot(<cv.ncvreg>) - Plots the cross-validation curve from a cv.ncvreg object
-
summary(<cv.ncvreg>)print(<summary.cv.ncvreg>) - Summarizing cross-validation-based inference
-
AUC(<cv.ncvsurv>) - AUC for cv.ncvsurv objects
-
logLik(<ncvreg>)logLik(<ncvsurv>) - Extract Log-Likelihood
-
predict(<cv.ncvreg>)coef(<cv.ncvreg>)predict(<cv.ncvsurv>)predict(<ncvreg>)coef(<ncvreg>) - Model predictions based on a fitted ncvreg object.
-
predict(<ncvsurv>) - Model predictions based on a fitted
ncvsurvobject.
-
plot(<ncvreg>) - Plot coefficients from a ncvreg object
-
plot(<ncvsurv.func>) - Plot survival curve for ncvsurv model
-
residuals(<ncvreg>) - Extract residuals from a ncvreg or ncvsurv fit
-
local_mfdr() - Estimate local mFDR for all features
-
mfdr() - Marginal false discovery rates
-
plot(<mfdr>) - Plot marginal false discovery rate curves
-
perm.ncvreg() - Permutation fitting for ncvreg
-
permres() - Permute residuals for a fitted ncvreg model
-
summary(<ncvreg>)print(<summary.ncvreg>) - Summary method for ncvreg objects
-
intervals() - Projection base test statistics and intervals