a function to create a design for PLMM modeling
Arguments
- data_file
For filebacked data (data from
process_plink()
orprocess_delim()
), this is the filepath to the processed data. Defaults to NULL (this argument does not apply for in-memory data).- rds_dir
For filebacked data, this is the filepath to the directory/folder where you want the design to be saved. Note: do not include/append the name you want for the to-be-created file – the name is the argument
new_file
, passed tocreate_design_filebacked()
. Defaults to NULL (this argument does not apply for in-memory data).- X
For in-memory data (data in a matrix or data frame), this is the design matrix. Defaults to NULL (this argument does not apply for filebacked data).
- y
For in-memory data, this is the numeric vector representing the outcome. Defaults to NULL (this argument does not apply for filebacked data). Note: it is the responsibility of the user to ensure that the rows in X and the corresponding elements of y have the same row order, i.e., observations must be in the same order in both the design matrix and in the outcome vector.
- ...
Additional arguments to pass to
create_design_filebacked()
orcreate_design_in_memory()
. See the documentation for those helper functions for details.
Value
A filepath to an object of class plmm_design
, which is a named list with the design matrix,
outcome, penalty factor vector, and other details needed for fitting a model. This list is stored as an .rds
file for filebacked data, so in the filebacked case a string with the path to that file is returned. For in-memory data,
the list itself is returned.
Details
This function is a wrapper for the other create_design...()
inner functions; all arguments
included here are passed along to the create_design...()
inner function that
matches the type of the data being supplied. Note which arguments are optional
and which ones are not.
Additional arguments for all filebacked data:
new_file User-specified filename (without .bk/.rds extension) for the to-be-created .rds/.bk files. Must be different from any existing .rds/.bk files in the same folder.
feature_id Optional: A string specifying the column in the data X (the feature data) with the row IDs (e.g., identifiers for each row/sample/participant/, etc.). No duplicates allowed. - for PLINK data: a string specifying an ID column of the PLINK
.fam
file. Options are "IID" (default) and "FID" - for all other filebacked data: a character vector of unique identifiers (IDs) for each row of the feature data (i.e., the data processed withprocess_delim()
) - if left NULL (default), X is assumed to have the same row-order as add_outcome. Note: if this assumption is made in error, calculations downstream will be incorrect. Pay close attention here.add_outcome A data frame or matrix with two columns: and ID column and a column with the outcome value (to be used as 'y' in the final design). IDs must be characters, outcome must be numeric.
outcome_id A string specifying the name of the ID column in 'add_outcome'
outcome_col A string specifying the name of the phenotype column in 'add_outcome'
na_outcome_vals Optional: a vector of numeric values used to code NA values in the outcome. Defaults to
c(-9, NA_integer)
(the -9 matches PLINK conventions).overwrite Optional: logical - should existing .rds files be overwritten? Defaults to FALSE.
logfile Optional: name of the '.log' file to be written – Note: do not append a
.log
to the filename; this is done automatically.quiet Optional: logical - should messages to be printed to the console be silenced? Defaults to FALSE
Additional arguments specific to PLINK data:
add_predictor Optional (for PLINK data only): a matrix or data frame to be used for adding additional unpenalized covariates/predictors/features from an external file (i.e., not a PLINK file). This matrix must have one column that is an ID column; all other columns aside the ID will be used as covariates in the design matrix. Columns must be named.
predictor_id Optional (for PLINK data only): A string specifying the name of the column in 'add_predictor' with sample IDs. Required if 'add_predictor' is supplied. The names will be used to subset and align this external covariate with the supplied PLINK data.
Additional arguments specific to delimited file data:
unpen Optional: an character vector with the names of columns to mark as unpenalized (i.e., these features would always be included in a model). Note: if you choose to use this option, your delimited file must have column names.
Additional arguments for in-memory data:
unpen Optional: an character vector with the names of columns to mark as unpenalized (i.e., these features would always be included in a model). Note: if you choose to use this option, X must have column names.
Examples
## Example 1: matrix data in-memory ##
admix_design <- create_design(X = admix$X, y = admix$y, unpen = "Snp1")
## Example 2: delimited data ##
# process delimited data
temp_dir <- tempdir()
colon_dat <- process_delim(data_file = "colon2.txt",
data_dir = find_example_data(parent = TRUE), overwrite = TRUE,
rds_dir = temp_dir, rds_prefix = "processed_colon2", sep = "\t", header = TRUE)
#> There are 62 observations and 2001 features in the specified data files.
#> At this time, plmmr::process_delim() does not not handle missing values in delimited data.
#> Please make sure you have addressed missingness before you proceed.
#>
#> process_plink() completed
#> Processed files now saved as /tmp/RtmpUJj45u/processed_colon2.rds
# prepare outcome data
colon_outcome <- read.delim(find_example_data(path = "colon2_outcome.txt"))
# create a design
colon_design <- create_design(data_file = colon_dat, rds_dir = temp_dir, new_file = "std_colon2",
add_outcome = colon_outcome, outcome_id = "ID", outcome_col = "y", unpen = "sex",
overwrite = TRUE, logfile = "test.log")
#> No feature_id supplied; will assume data X are in same row-order as add_outcome.
#> There are 0 constant features in the data
#> Subsetting data to exclude constant features (e.g., monomorphic SNPs)
#> Column-standardizing the design matrix...
#> Standardization completed at 2024-12-31 18:41:08
#> Done with standardization. File formatting in progress
# look at the results
colon_rds <- readRDS(colon_design)
str(colon_rds)
#> List of 18
#> $ X_colnames : chr [1:2001] "sex" "Hsa.3004" "Hsa.13491" "Hsa.13491.1" ...
#> $ X_rownames : chr [1:62] "row1" "row2" "row3" "row4" ...
#> $ n : num 62
#> $ p : num 2001
#> $ is_plink : logi FALSE
#> $ outcome_idx : int [1:62] 1 2 3 4 5 6 7 8 9 10 ...
#> $ y : int [1:62] 1 0 1 0 1 0 1 0 1 0 ...
#> $ std_X_rownames: chr [1:62] "row1" "row2" "row3" "row4" ...
#> $ unpen : int 1
#> $ unpen_colnames: chr "sex"
#> $ ns : int [1:2001] 1 2 3 4 5 6 7 8 9 10 ...
#> $ std_X_colnames: chr [1:2001] "sex" "Hsa.3004" "Hsa.13491" "Hsa.13491.1" ...
#> $ std_X :Formal class 'big.matrix.descriptor' [package "bigmemory"] with 1 slot
#> .. ..@ description:List of 13
#> .. .. ..$ sharedType: chr "FileBacked"
#> .. .. ..$ filename : chr "std_colon2.bk"
#> .. .. ..$ dirname : chr "/tmp/RtmpUJj45u/"
#> .. .. ..$ totalRows : int 62
#> .. .. ..$ totalCols : int 2001
#> .. .. ..$ rowOffset : num [1:2] 0 62
#> .. .. ..$ colOffset : num [1:2] 0 2001
#> .. .. ..$ nrow : num 62
#> .. .. ..$ ncol : num 2001
#> .. .. ..$ rowNames : NULL
#> .. .. ..$ colNames : chr [1:2001] "sex" "Hsa.3004" "Hsa.13491" "Hsa.13491.1" ...
#> .. .. ..$ type : chr "double"
#> .. .. ..$ separated : logi FALSE
#> $ std_X_n : num 62
#> $ std_X_p : num 2001
#> $ std_X_center : num [1:2001] 1.47 7015.79 4966.96 4094.73 3987.79 ...
#> $ std_X_scale : num [1:2001] 0.499 3067.926 2171.166 1803.359 2002.738 ...
#> $ penalty_factor: num [1:2001] 0 1 1 1 1 1 1 1 1 1 ...
#> - attr(*, "class")= chr "plmm_design"
## Example 3: PLINK data ##
# \donttest{
# process PLINK data
temp_dir <- tempdir()
unzip_example_data(outdir = temp_dir)
#> Unzipped files are saved in /tmp/RtmpUJj45u
plink_data <- process_plink(data_dir = temp_dir,
data_prefix = "penncath_lite",
rds_dir = temp_dir,
rds_prefix = "imputed_penncath_lite",
# imputing the mode to address missing values
impute_method = "mode",
# overwrite existing files in temp_dir
# (you can turn this feature off if you need to)
overwrite = TRUE,
# turning off parallelization - leaving this on causes problems knitting this vignette
parallel = FALSE)
#>
#> Preprocessing penncath_lite data:
#> Creating penncath_lite.rds
#>
#> There are 1401 observations and 4367 genomic features in the specified data files, representing chromosomes 1 - 22
#> There are a total of 3514 SNPs with missing values
#> Of these, 13 are missing in at least 50% of the samples
#>
#> Imputing the missing (genotype) values using mode method
#>
#> process_plink() completed
#> Processed files now saved as /tmp/RtmpUJj45u/imputed_penncath_lite.rds
# get outcome data
penncath_pheno <- read.csv(find_example_data(path = 'penncath_clinical.csv'))
outcome <- data.frame(FamID = as.character(penncath_pheno$FamID),
CAD = penncath_pheno$CAD)
unpen_predictors <- data.frame(FamID = as.character(penncath_pheno$FamID),
sex = penncath_pheno$sex,
age = penncath_pheno$age)
# create design where sex and age are always included in the model
pen_design <- create_design(data_file = plink_data,
feature_id = "FID",
rds_dir = temp_dir,
new_file = "std_penncath_lite",
add_outcome = outcome,
outcome_id = "FamID",
outcome_col = "CAD",
add_predictor = unpen_predictors,
predictor_id = "FamID",
logfile = "design",
# again, overwrite if needed; use with caution
overwrite = TRUE)
#>
#> Aligning external data with the feature data by FamID
#> Adding predictors from external data.
#> Aligning IDs between fam and predictor files
#> Column-wise combining data sets
#>
|
| | 0%
|
| | 1%
|
|= | 1%
|
|= | 2%
|
|== | 2%
|
|== | 3%
|
|== | 4%
|
|=== | 4%
|
|=== | 5%
|
|==== | 5%
|
|==== | 6%
|
|===== | 6%
|
|===== | 7%
|
|===== | 8%
|
|====== | 8%
|
|====== | 9%
|
|======= | 9%
|
|======= | 10%
|
|======= | 11%
|
|======== | 11%
|
|======== | 12%
|
|========= | 12%
|
|========= | 13%
|
|========= | 14%
|
|========== | 14%
|
|========== | 15%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 16%
|
|============ | 17%
|
|============ | 18%
|
|============= | 18%
|
|============= | 19%
|
|============== | 19%
|
|============== | 20%
|
|============== | 21%
|
|=============== | 21%
|
|=============== | 22%
|
|================ | 22%
|
|================ | 23%
|
|================ | 24%
|
|================= | 24%
|
|================= | 25%
|
|================== | 25%
|
|================== | 26%
|
|=================== | 26%
|
|=================== | 27%
|
|=================== | 28%
|
|==================== | 28%
|
|==================== | 29%
|
|===================== | 29%
|
|===================== | 30%
|
|===================== | 31%
|
|====================== | 31%
|
|====================== | 32%
|
|======================= | 32%
|
|======================= | 33%
|
|======================= | 34%
|
|======================== | 34%
|
|======================== | 35%
|
|========================= | 35%
|
|========================= | 36%
|
|========================== | 36%
|
|========================== | 37%
|
|========================== | 38%
|
|=========================== | 38%
|
|=========================== | 39%
|
|============================ | 39%
|
|============================ | 40%
|
|============================ | 41%
|
|============================= | 41%
|
|============================= | 42%
|
|============================== | 42%
|
|============================== | 43%
|
|============================== | 44%
|
|=============================== | 44%
|
|=============================== | 45%
|
|================================ | 45%
|
|================================ | 46%
|
|================================= | 46%
|
|================================= | 47%
|
|================================= | 48%
|
|================================== | 48%
|
|================================== | 49%
|
|=================================== | 49%
|
|=================================== | 50%
|
|=================================== | 51%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 52%
|
|===================================== | 53%
|
|===================================== | 54%
|
|====================================== | 54%
|
|====================================== | 55%
|
|======================================= | 55%
|
|======================================= | 56%
|
|======================================== | 56%
|
|======================================== | 57%
|
|======================================== | 58%
|
|========================================= | 58%
|
|========================================= | 59%
|
|========================================== | 59%
|
|========================================== | 60%
|
|========================================== | 61%
|
|=========================================== | 61%
|
|=========================================== | 62%
|
|============================================ | 62%
|
|============================================ | 63%
|
|============================================ | 64%
|
|============================================= | 64%
|
|============================================= | 65%
|
|============================================== | 65%
|
|============================================== | 66%
|
|=============================================== | 66%
|
|=============================================== | 67%
|
|=============================================== | 68%
|
|================================================ | 68%
|
|================================================ | 69%
|
|================================================= | 69%
|
|================================================= | 70%
|
|================================================= | 71%
|
|================================================== | 71%
|
|================================================== | 72%
|
|=================================================== | 72%
|
|=================================================== | 73%
|
|=================================================== | 74%
|
|==================================================== | 74%
|
|==================================================== | 75%
|
|===================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 76%
|
|====================================================== | 77%
|
|====================================================== | 78%
|
|======================================================= | 78%
|
|======================================================= | 79%
|
|======================================================== | 79%
|
|======================================================== | 80%
|
|======================================================== | 81%
|
|========================================================= | 81%
|
|========================================================= | 82%
|
|========================================================== | 82%
|
|========================================================== | 83%
|
|========================================================== | 84%
|
|=========================================================== | 84%
|
|=========================================================== | 85%
|
|============================================================ | 85%
|
|============================================================ | 86%
|
|============================================================= | 86%
|
|============================================================= | 87%
|
|============================================================= | 88%
|
|============================================================== | 88%
|
|============================================================== | 89%
|
|=============================================================== | 89%
|
|=============================================================== | 90%
|
|=============================================================== | 91%
|
|================================================================ | 91%
|
|================================================================ | 92%
|
|================================================================= | 92%
|
|================================================================= | 93%
|
|================================================================= | 94%
|
|================================================================== | 94%
|
|================================================================== | 95%
|
|=================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 96%
|
|==================================================================== | 97%
|
|==================================================================== | 98%
|
|===================================================================== | 98%
|
|===================================================================== | 99%
|
|======================================================================| 99%
|
|======================================================================| 100%
#> There are 62 constant features in the data
#> Subsetting data to exclude constant features (e.g., monomorphic SNPs)
#> Column-standardizing the design matrix...
#> Standardization completed at 2024-12-31 18:41:11
#> Done with standardization. File formatting in progress
# examine the design - notice the components of this object
pen_design_rds <- readRDS(pen_design)
# }