Skip to contents
plmm()
Fit a linear mixed model via non-convex penalized maximum likelihood.

Loss and cross-validation for PLMMs

cv_plmm()
Cross-validation for plmm
plmm_loss()
Loss method for "plmm" class

Coefficient methods for PLMMs

coef(<cv_plmm>)
Coef method for "cv_plmm" class
coef(<plmm>)
Coef method for "plmm" class

Data (pre)processing and wrangling

create_design()
a function to create a design for PLMM modeling
find_example_data()
A function to help with accessing example PLINK files
process_plink()
Preprocess PLINK files using the bigsnpr package
process_delim()
A function to read in large data files as an FBM
relatedness_mat()
Calculate a relatedness matrix
unzip_example_data()
For Linux/Unix and MacOS only, here is a companion function to unzip the .gz files that ship with the plmmr package

Plotting, summarizing, and formatting

summary(<plmm>)
A summary method for the plmm objects
summary(<cv_plmm>)
A summary function for cv_plmm objects
plot(<plmm>)
Plot method for plmm class
plot(<cv_plmm>)
Plot method for cv_plmm class
print(<summary.cv_plmm>)
Print method for summary.cv_plmm objects
print(<summary.plmm>)
A function to print the summary of a plmm model

Prediction

predict(<plmm>)
Predict method for plmm class

Data sets

admix
Admix: Semi-simulated SNP data